copenhagen2o17

michael@developsense.com

Transforming Trainees Into Testers

Michael Bolton
DevelopSense

CEuroSTAR

Software Testing Conference

The Goals

* Take 18 people who have never been testers
and prepare them for testing jobs

* Focus on crisp, effective bug reporting

* Develop testing skills that will be useful in as
many contexts as possible.

We develop skill and tacit knowledge in three ways.
Only one way is through explanations,
and that may be the weakest way.

People forget that even though we would prefer
not to make mistakes, mistakes are normal when
we're learning fo do difficult things.

w W L

We learn far more, and more duickly, from our
own practice, mistakes, and feedback. Many
process models fail fo recognize feedback loops.

r . ..’
Naoas
S

-

Ko/ Siwk v
4 -} !

We also learn from being immersed in a culture
where people are doing the same kinds of things.
Many process models fail to recognize this.

Teaching Principles
* Naturalistic experiential exercises
* Learn to test by trying to test

* Emphasize
* Rapid learning
* Recording and reporting
* Developing models of products, testing, and risk
» Developing test ideas and checklists
* Collaboration

* Immediate and constant feedback
* moving to peer review before instructor review

 Start easy, get harder quickly

* Support after the classes from our network
* online coaching via Skype, email, etc.

Teaching Principles

* De-emphasize...
* Paperwork
 Specific techniques
 Formal preparation
* Following scripts and test cases
* Solo work
* Bureaucracy

The General Premise for RST

* You have something to test.
* You have had no opportunity to prepare.

* |f there are bad bugs, your clients need to know,
and time is limited. But, except for you, nobody
knows how to test.

* You must prepare starting now, just enough, using
any available help, to learn about the product
quickly, then apply useful tools to get into to deep
testing.

* You must do all that while looking like you know
what you are doing, and ACTUALLY knowing what

you are doing.

~ Day One Agenda

|,4{ Day Two Agenda -

& Crientation lecture (30-45 min.)

& Intro to qTest bug tracking (30 min.)

Student work (13 min)
Provide PCC (15 min.)

% Lunge Game Exercise (90 min.) = BREAK
Cpen Debrief (30 min.)
Bug Rewiew (30 min.)

& LUNCH

Mame Teams
' Form teams (10-15 min.) Make Mame Cards

! Form Team Tables

Manual notetaking (15 min.)

& What We Mean by "Simple Notes" (25 min) (

| gTrace (10 min.)

= BREAK

First allow them to ask guestions...
¥ & Project Statement (30 min.}

| -then push them to ask at least some questions

i Identify core features of XMind basic (60-90 minutes) - Student Work (60-90 min.)

¢ Bug Reporting (20 min.)

(lgnoring Bugs for Mow) Each team presents and JUSTIFIES list (60 min.)

. Identify core features cont.. (100 minutes) - = BREAK

Review Simple Test Motes (40 min.)

& Survey Testing and Touring (30 min.)

= LUNCH

Student Work (20 min.)

' Test a Help Topic {markers or boundaries)

I Ctpen debrief of simple test notes (20 min.)

& How to write a bug report (30 min)

= BREAK

First Exercise: The Horse Lunge Game

“As you see, this is a horse game for kids. The author wants
this game for her portfolio, to showcase her talents as an
animator for kids’ games and educational software. She
knows that there are a few glitches in the game and she wants
to clean them up. Find and report every bug you can to help

her do that.”

First Exercise: The Horse Lunge Game

* Lots of easy-to-find bugs, so lots of reports
 Little systematic bug reporting
* Lots of weak bug reports
* We were able to tell them how the reports were weak

Generating Feedback

* Debrief questions

* How did that feel?

* Do you feel you tested the program?
* Do you think you tested it enough?
 What more should you do?

* What are your best bugs?

* Tuning up
* Emphasis on note-taking
e Description of bug and issue

* Key Lesson

e Shallow testing of shallow programs with shallow bugs
isn’t too hard.

We want PROOF!
Expect to discuss these things during a debrief

* Past
 What happened during the session?

 Results
e What was achieved?

* Obstacles
 What got in the way or slowed things down?

e Outlook

e What’s next? What remains to be done?

* Feelings
* How does the tester feel about all this?

Our approach was to offer the testers freedom AND responsibility to learn about
testing BY testing. In our view, people don’t learn testing very well from scripts or
canned examples. They learn by trying to test, not doing very well, getting AND
giving feedback, and improving via practice.

Why Do Freedom and Responsibility Matter?

EFneacement and Judement

The approach you use governs how your
mind drives action— like a bicycle gear.

Y?\atf: fhe ; .Jo the structure
yInms o of The festing.
your mind...

(YOUR APPROACH) (YOUR STRATEGY)

— -

Why Do Freedom and Responsibility Matter?

Engacement and Judement

When your mind is in the “wrong gear”...

IH

You “stall.” You “bounce off the problem.”
or you “over-engineer the solution”

Why Do Freedom and Responsibility Matter?

Engagement and Judgment

NCH VOULTL T 0 (] L[] VIO C

Alternate between deliberative and
spontaneous testing styles.

Deliberative testing moves mountains.
Spontaneous testing jumps over them.

Or you "over-engineer

The Formality Continuum

INFORMAL FORMAL

Not done in any specific way, nor to Done in a specific way, or
verify specific facts. to verify specific facts.
Iferviewsand ~ Analyfical Mafrices & Ouflines _
Discussions Exploration of Test Conditions Vague/Gel.nenc “Human
Exploratory Product Test Seripts Transceiver”
SurVeys Coverage Specific CHhurr‘\?n Machine
Play Outline Test Data ecaing Checking
) ! \ !
Search for problems Confirmation

Testing to learn

Loops of testing start with informal, exploratory work. If you want to do excellent
formal testing (like automated checking), it must begin with excellent informal work.

A Real Product: XMind

XMind
Product Coverage Outline

Workspace
New
| Cloud
Home >n
. Recent
Open

. GUI
Main Canvas |

Caption Bar

Menu &

Button Bar

Client Window &
Side Panel

| Status Bar

| T U FEE L S IRIT LE3L LSS (S

—{ Day Two Agenda -| & How to write a bug report (30 min)
4= BREAK
Clean up your bugs (25 min.)
' Identify core features cont.. (80 minutes) | Review bugs of another team, comment on them as a team, and identify the best and worst (30 min.)

| Review best and worst bug reports as a class (45 min)

Only F and D described (20 minutes)

& How to analyze a product (30 min.)

| (possible exercise) identify data and function on a display (15 min)

. Create a PCC to Support Deep Testing of ¥mind (1 hr.) Student Work (60 min.)

4 Create a PCO to Support Deep Testing of Xmind cont.. (43 min.) Review PCOs as a class (45 min.)

' Does XMind work? How do you know? (45 min.)

== BREAK
Student Work (60 min.)

% Sanity test the product vs, PCO (2 hrs. 15 min.) ‘ o LUNCH

‘ Debrief Simple Motes and Bugs (60 min.)

—{ Day Three Agenda } :
&° How to think about product risks and focus your testing (45 min.)

= BREAK

_ Student Work (30 min.)
i Create risk lists (30 min))

| open debrief (20 min.)

& How to move from shallow testing to deep testing (30 min.)

Student Work (30 min.)

% COMPLETE the sanity test the product vs. PCO (45 min}
open debrief (15 min)

A& Descriptive test notes (30 min.)
& Feedback on the risk lists (30 min.)

4= BREAK
Student Work (60 min.)
r ' Deep Testing of risk area (stability) with huge mindmap (2 hrs.) [- -
—{ Day Four Agenda }- | debrief (60 min.)

= LUNCH
& How bug Bug triage works (15 min.)

Triage in a different room, team-by-team

¥ Bug Triage Meeting
|
: : | Simultaneously have them fix their PCO's and risk lists

Homework: Read Cheesegrater Report

Second Exercise: XMind Survey

Our mission is to discover the quality status of the basic
version of XMind. (a real, popular mind mapping tool)

We must find critical bugs in XMind before this version
is deployed in one week. We also must advise if there is
any good reason to consider postponing the
deployment of this product. We are also interested in
non-critical bugs, but your preference should be to find
critical problems QUICKLY and get them reported
SOON.

Remember, XMind doesn’t make money on the basic
version. They make money when people upgrade to the
Pro version.

The “properties” functionality was rewritten in the
latest release. But, there shouldn't be any problems
because the functionality has not changed. The
“markers” feature has just been added, though.

Lessons

* Summarizing a Session

Your name, date/time, length of test session
Product version/environment

Charter statement for your test session (one or two
sentences)

Any way in which you have not fulfilled your charter

Any bugs you found (in this case put them in gTest, but
include the bug titles and IDs in your notes)

Any guestions or issues that came up for you

* Bugs and Issues

A bug is anything that threatens the value of the product
* informally, a bug is something that bugs somebody who matters

An issue is anything that threatens the value of our testing (or of the
project, or of the busines)
* most of the time, an issue is something that makes testing harder or slower

XMind Survey
* Trap

e Getting started without questioning the mission

* Qutcome
* Shallow notes and mind maps
e Shallow analysis
 Still poor bug reports

* Teams did some review of their own work, but with little
grounding for it

* Feedback

* Sharper feedback from instructors

* Lessons

* Testing will be shallow if you don't know the product.

* Deeper testing of deeper programs with deeper bugs is
harder.

Mapping the Product

* Mind maps helped to illustrate students’
developing skills and models

* Peer review seemed to greatly sharpen the
qguality of the work and of the artifacts; two-
stage peer review even more so.

You Found a Bug! Bug Title (Summary) Guidelines

Before you report it, RIMGEA!

Replicate it State the problem first, then conditions
— try to reproduce it; if you can’t, gather and record clues .
solate it — What Bad Thing happened? or

— minimize the steps to reproduce it in the easiest possible way — What Good Thing failed to happen?

Maximize _—

- ?
_ see if you can make it trigger a worse failure When and where did it happen/not happens
— vary behaviour, program settings, inputs, or platforms e Be concise

Generalize it
— “uncorner the corner cases”

Externalize it . . .
— Consider how it might impact other stakeholders Identlfy the business risk

And then... — a bug doesn’t matter if it doesn’t threaten value to
— report it clearly and dispassionately some person who matters

Be specific, not generic

» Express yourself dispassionately

See the Black Box Software Testing Bug Advocacy material at
http://www.testingeducation.org/BBST/bugadvocacy/

Bug Description Guidelines A Mnemonic for Rapid Bug Reporting:
* State the problem. PEOPLE WORKing
* A Problem that you've observed.
examp|e is obvious from the prob|em * include steps, data, circumstances, or platform (only) if needed
* An Oracle
statement * An oracle is “a way to recognize a problem” (or to describe one, after you've
= . recognized it)
: Say SpElelca”y hOW tO make It happen * Oracles are often linked to a risk or to a quality criterion that is threatened.
UNLESS a description is obvious * Polite
) . * Nobody really likes bad news. Egos are on the line.
* Put the steps in a numbered list UNLESS o Literate
the re are Onl\/ one or two ste ps * A bug report is a story about an interaction between a person and a product
' or feature. Tell that story.
* State your oracle (WHY you think it’s a bug). * Extrapolation
. . * How could this problem be more general, and/or more extreme?
* If there is a workaround or an exception to * A Workaround

* Maybe there is one that reduces the severity or impact of the problem.

the problem, say so.

A Checklist to Sharpen Bug Reporting
PEOPLE WORKing

A Problem that you’ve observed.

* An Example to illustrate the problem
An Oracle

Polite

* Literate

Extrapolation
A Workaround

Your bug report doesn’t have to follow this pattern (although it should almost
certainly include the first three, and a workaround if there is one). But you might
find it helpful to consider these points when you’re writing or evaluating a bug
report.

10b-TestNotesAndBugReports.pdf - 7

The Four-Part Risk Story

There is a potential that...
some VICTIM...

(a problem cannot exist without a person to experience it)

will experience a PROBLEM...

(such as loss, harm, annoyance, or diminished value)

because of a VULNERABILITY in the product...

(such as a bug, a missing feature, or an issue)

that is triggered by some THREAT.

(even if the vulnerability is there, if it’s never triggered, then
the problem won’t be experienced by a person)

All four factors must be present.

Risk Is A Key Driver in Your Test Strategy

Requirements _
Business-based Requirements
Risk Analysis Coverage
N Risk-Based
Risk Test
i Strateqy
et Product Test
. < > .
Risks Risk Activities
Coverage Test
Activities
List
Technology-based Product
Risk Analysis Product Coverage
A good fest sfrateqy is: [Pt
o B : Coverage
Product-Specific i
* Risk-focused
* Diversified

* Practical

Assignment: Deep Testing

We have determined that there is some evidence pointing to
instability in XMind. Therefore...

Perform stress testing on XMind. Cover a wide variety of
features and functions. You may take advantage of the
random1.xmind and random2.xmind files that have been
generated for testing purposes.

As usual, each team must produce:
- simple test notes

- progressive improvement on the depth and breadth of your
PCO

- bug reports

T TN FEE A SHRAIT LSS0 RIS S BT

—{ Day Two Agenda (-| & How to write a bug report (30 min)
J 4= BREAK
Clean up your bugs (25 min.)
Y Identify core features cont.. (80 minutes) | Rewview bugs of ancther team, comment on them as a team, and identify the best and worst (30 min.)

| Review best and worst bug reports as a class (45 min)
Cnly F and D described (30 minutes)

& How to analyze a product (30 min.)

| [possible exercise) identify data and function on a display (15 min)

Y Create a PCO to Support Deep Testing of Xmind (1 hr.) Student Work (60 min.)

& Create a PCO to Support Deep Testing of Xmind cont.. (45 min.) Review PCOs as a class (45 min,)

' Does XMind work? How do you know? {45 min.)

= BREAK
Student Work (60 min.)

& Sanity test the product vs. PCO (2 hrs. 15 min.) ‘ & LUNCH
‘ Debrief Simple Motes and Bugs (60 min.)

—{ Day Three Agenda }-
& How to think about product risks and focus your testing (45 min.)

= BREAK
Student Work (30 min.)

& Create risk lists (50 min.)
| open debrief (20 min.)

& How to move from shallow testing to deep testing (30 min.)

Student Work (30 min.)

%' COMPLETE the sanity test the product vs. PCO (45 min)
open debrief (15 min)

A&’ Descriptive test notes (30 min.)
&' Feedback on the risk lists (30 min.)

4 BREAK
) Student Work (60 min.)
r % Deep Testing of risk area (stability) with huge mindmap (2 hrs.) 2 - -
4{ Day Four Agenda }— | debrief (60 min)

= LUNCH
& How bug Bug triage works (15 min.)
Triage in a different room, team-by-team

¥ Bug Triage Meeting
w
- - | Simultanecusly have them fix their PCO's and risk lists

Homework: Read Cheesegrater Report

Last Assignment (Day 5)

* We are working on Microsoft Word. The
program manager is concerned today about
possible problems in the Insert/Page
Number/Format Page Numbers dialog.

* |n one hour, examine that dialog with a
partner.

* We want the highest-quality bug report
about the single most important bug or issue
that you can find in the dialog.

* You should also mail test notes to the
product owner.

Outcomes

* The students were still struggling with
creating a coverage model

* The bug reports were getting MUCH better

* As | group, we produced 10 bug reports. Mine was fairly
judged to be the second best of the lot.

* The students were beginning to exercise skill
and judgment for self-direction which, when
supported by an experienced test manager,
gave them a running start.

Outcomes

* Approximately 70% of the participants in the
overall program are still in IT.

* According to some people who placed them,
the trainees were actually overprepared

compared to the rest of the market
* in particular, they interviewed well.

* Because curriculum change was easy,
adaptation to new ideas and tools was easy.

* Access to our professional network provided

ready access to a lot of people

* via Skype channels, coaching, aftercare, which trainees
took advantage of

* Non-enterprise people didn’t adapt well to

corporate drudgery.

* The training program was too exciting!

* Also, people would job-hop and quit more quickly
because their experience didn't point them to long-term
work.

* Some trainees didn't have the drive or
determination to continue the learning, and
dropped out.

Test Design and Execution

How do you achieve

excellent test design?

Product

—

/7

':; Test :;' /
V4 ——

ldeas
How do you guide new testers?

Product
or spec

Test Design and Execution

Achieve excellent test design by
exploring different test designs
while actually testing procili

—
'(- Test 'y

-
— —
/ ldeas
Guide testers with personal supervision and concise
documentation of test ideas. Meanwhile, train them

Product so that they can guide themselves and be accountable
Or spe€ for increasingly challenging work.

